# Recover Binary Search Tree

> Two elements of a binary search tree (BST) are swapped by mistake.

> Recover the tree without changing its structure.

> Note:

> A solution using O(n) space is pretty straight forward. Could you devise a constant space solution?

这题需要修复一颗二叉搜索树的两个交换节点数据,我们知道对于一颗二叉搜索树来说,如果按照中序遍历,那么它输出的值是递增有序的,所以我们只需要按照中序遍历输出,在输出结果里面找到两个异常数据(比它后面输出结果大),交换这两个节点的数据就可以了。

但是这题要求使用O(1)的空间,如果采用通常的中序遍历(递归或者栈)的方式,都需要O(N)的空间,所以这里我们用Morris Traversal的方式来进行树的中序遍历。

Morris Traversal中序遍历的原理比较简单:

+ 如果当前节点的左孩子为空,则输出当前节点并将其有孩子作为当前节点。
+ 如果当前节点的左孩子不为空,在当前节点的左子树中找到当前节点在中序遍历下的前驱节点,也就是当前节点左子树的最右边的那个节点。
+ 如果前驱节点的右孩子为空,则将它的右孩子设置为当前节点,当前节点更新为其左孩子。
+ 如果前驱节点的右孩子为当前节点,则将前驱节点的右孩子设为空,输出当前节点,当前节点更新为其右孩子。

重复上述过程,直到当前节点为空,递归的时候我们同时需要记录错误的节点。那么我们如何知道一个节点的数据是不是有问题呢?对于中序遍历来说,假设当前节点为cur,它的前驱节点为pre,如果cur的值小于pre的值,那么cur和pre里面的数据就是交换的了。

代码如下:

```c++
class Solution {
public:
void recoverTree(TreeNode *root) {
TreeNode* cur = 0;
TreeNode* pre = 0;
TreeNode* p1 = 0;
TreeNode* p2 = 0;
TreeNode* preCur = 0;

bool found = false;

if(!root) {
return;
}

cur = root;
while(cur) {
if(!cur->left) {
//记录p1和p2
if(preCur && preCur->val > cur->val) {
if(!found) {
p1 = preCur;
found = true;
}
p2 = cur;
}

preCur = cur;
cur = cur->right;
} else {
pre = cur->left;
while(pre->right && pre->right != cur) {
pre = pre->right;
}

if(!pre->right) {
pre->right = cur;
cur = cur->left;
} else {
//记录p1和p2
if(preCur->val > cur->val) {
if(!found) {
p1 = preCur;
found = true;
}
p2 = cur;
}
preCur = cur;
pre->right = NULL;
cur = cur->right;
}
}
}

if(p1 && p2) {
int t = p1->val;
p1->val = p2->val;
p2->val = t;
}
}
};
```