算法精粹(algorithm-essentials)

感谢soulmachine@github提供内容
## Pascal's Triangle


### 描述

Given `numRows`, generate the first `numRows` of Pascal's triangle.

For example, given `numRows = 5`,

Return

```
[
[1],
[1,1],
[1,2,1],
[1,3,3,1],
[1,4,6,4,1]
]
```


### 分析

本题可以用队列,计算下一行时,给上一行左右各加一个0,然后下一行的每个元素,就等于左上角和右上角之和。

另一种思路,下一行第一个元素和最后一个元素赋值为1,中间的每个元素,等于上一行的左上角和右上角元素之和。


### 从左到右

{% if book.java %}
```java
// Pascal's Triangle
// 时间复杂度O(n^2),空间复杂度O(n)
public class Solution {
public List> generate(int numRows) {
List> result = new ArrayList<>();
if(numRows == 0) return result;

result.add(new ArrayList<>(Arrays.asList(1))); //first row

for(int i = 2; i <= numRows; ++i) {
Integer[] current = new Integer[i]; // 本行
Arrays.fill(current, 1);
List prev = result.get(i - 2); // 上一行

for(int j = 1; j < i - 1; ++j) {
current[j] = prev.get(j-1) + prev.get(j); // 左上角和右上角之和
}
result.add(new ArrayList<>(Arrays.asList(current)));
}
return result;
}
}
```
{% endif %}

{% if book.cpp %}
```cpp
// LeetCode, Pascal's Triangle
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
vector > generate(int numRows) {
vector > result;
if(numRows == 0) return result;

result.push_back(vector(1,1)); //first row

for(int i = 2; i <= numRows; ++i) {
vector current(i,1); // 本行
const vector &prev = result[i-2]; // 上一行

for(int j = 1; j < i - 1; ++j) {
current[j] = prev[j-1] + prev[j]; // 左上角和右上角之和
}
result.push_back(current);
}
return result;
}
};
```
{% endif %}


### 从右到左

{% if book.java %}
```java
// Pascal's Triangle
// 时间复杂度O(n^2),空间复杂度O(n)
public class Solution {
public List> generate(int numRows) {
List> result = new ArrayList<>();
List array = new ArrayList<>();
for (int i = 1; i <= numRows; i++) {
for (int j = i - 2; j > 0; j--) {
array.set(j, array.get(j - 1) + array.get(j));
}
array.add(1);
result.add(new ArrayList(array));
}
return result;
}
}
```
{% endif %}

{% if book.cpp %}
```cpp
// LeetCode, Pascal's Triangle
// 时间复杂度O(n^2),空间复杂度O(n)
class Solution {
public:
vector > generate(int numRows) {
vector > result;
vector array;
for (int i = 1; i <= numRows; i++) {
for (int j = i - 2; j > 0; j--) {
array[j] = array[j - 1] + array[j];
}
array.push_back(1);
result.push_back(array);
}
return result;
}
};
```
{% endif %}


### 相关题目

* [Pascal's Triangle II](pascals-triangle-ii.md)